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INTRODUCTION

METHOD

METHODS

Background

• Unlike genome and proteome, metabolome accounts for the

genotype and phenotype

• LC-MS generates complex dataset (thousands of peaks) because of

high sensitivity and specificity

• Therefore, data processing is considered as a major bottleneck to

unravel the translational potential of metabolomics

Aims

• The present study has proposed a systematic data processing

workflow for the untargeted metabolomics

• Developed workflow tested on common variable immunodeficiency

(CVID) case/control fecal samples .

RESULTS

CONCLUSIONS AND FUTURE DIRECTIONS

Fig.1. XCMS generated 6940 peaks with corresponding m/z,

retention time and peak area. Peak list was submitted to data

processing workflow describe in method section. Tentative

structure of 15 statistically significant metabolites is confirmed

based on the MS2 data

Fig.2. Heat map visualize the gradient changes of 15 differential

features between CVID and healthy subject. Red color indicates

a high intensity while blue color depicts low intensity. Each

column represents individual biological sample
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• Untargeted metabolomics data processing pipeline has effectively

removed the noise and produce quantitatively reliable metabolite

peaks

• Pipeline tested on CVID case/control samples (6 each) and 15

significant metabolites found which represent the metabolic

dysregulation in CVID

• In future, pipeline will be fine tuned to characterized membrane

lipids to understand pathophysiology of Alzheimer disease
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Data Acquisition 

CA B

XCMS online was used. Data were exported as

CSV file contains m/z, retention time, and peak

area for each peak.

Blank and pooled QC samples were employed

for the removal of background noise and

quantitatively unreliable peaks

Peaks were matched against HMDB and

KEGG to retain only biological relevant

metabolites (mass accuracy <3 ppm)

To filter peaks, The RPLC gradient was

segmented based on elution order of the 36

standard compounds (Clog P range -6 to 11).

Data was filtered retaining only features with

fold change >1.5 or <0.67 and corresponding

p-value of < 0.1
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