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Despite significant recent improvements in pediatric oncology, the success rate for the 
treatment of certain malignancies remains challenging [1]. Therefore, there is a great demand 
for novel approaches such as "personalized oncology," which breaks the traditional "one-size-
fits-all" paradigm and tries to deliver the right care to the right patient at the right time. It is 
based on the design of the most suitable therapeutic plan for each patient by the oncology 
experts in a very limited time frame. The experts have to evaluate a vast amount of data about 
the patient and the tumor from the detailed molecular characterization and various 
bioinformatics analyses [2]. Even though this approach requires a lot of effort, it is used in many 
hospitals  around the globe, demonstrating its positive impact [3-5]. 
This approach is also used in the Department of Children's Oncology of the University Hospital 
in Brno. Their data acquisition pipeline [6] is based on transcriptome sequencing of the tumor, 
followed by in silico analyses of identified mutations and changes in metabolic pathways. 
However, structural analysis is missing in the current pipeline. Therefore, structure-based 
prediction of the effect of mutations and evaluation of binding affinities of possible drugs is of 
great interest.
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îThe service must be fully automatic and should not need any user interactions

îThe pipeline must provide all relevant data about the possible impact of mutation

îThe calculations must be highly parallel and executable on supercomputers to achieve 
execution time less than 14 days because the Board needs to make the decision quickly

îAll the results must be presented in a comprehensive and straightforward way using 
appropriate color coding and visual elements as the medical experts are not protein chemists

îThe tool should be easy to use and must not require any knowledge about the studied 
proteins

îThe tool must provide interactive and user-friendly web interface as multiple hospitals 
around the world can benefit from our analyses
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INHIBITORS
CaverDock
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kcal/mol
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Ebound
kcal/mol
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kcal/mol

RMSD Å
Ebound

ΔE (kcal/mol)
Emax

ΔE (kcal/mol)
RMSD ΔÅ

Alfentanil -8.6 -4.2 0.2 -8.9 -4.4 0.1 -0.3 -0.2 -0.1

Prostaglandin E2 -10.9 -7.9 0.9 -10.7 -7.4 0.4 0.2 0.5 -0.5

Propoxyphene -10 -5.8 1.5 -10.6 -5.4 1.4 -0.6 0.4 -0.1

Sulfamethazine -10.1 -8.8 0.4 -10.9 -9.1 0.7 -0.8 -0.3 0.3

Rivastigmine -10.1 -7 0.6 -9.4 -7.4 0.9 0.7 -0.4 0.3

Droperidol -9.3 -6.8 1.1 -9.1 -6.4 0.7 0.2 0.4 -0.4

iso Misoprostol -9.4 -5.2 1.4 -9.8 -5.8 1.1 -0.4 -0.6 -0.3

Fluvastatin -9.6 -5.3 0.7 -10.4 -5.4 1.4 -0.8 -0.1 0.7

Dehydrocholic acid -8.8 -6 0.2 -9.7 -6.3 0.7 -0.9 -0.3 0.5

Rofecoxib -10.3 -6.7 0.5 -11.1 -6.1 0.9 -0.8 0.6 0.4

Wild Type Mutant R132H Mutant – Wild Type

ΔΔG (kcal/mol) ΔΔG (kcal/mol) ΔΔG (kcal/mol)

Predict_SNP 87%

STABILITY - Rosetta 0 1.1 1.1

STABILITY - FoldX 0 0.8 0.8

Bottleneck Å Throughput Bottleneck Å Throughput Bottleneck ΔÅ Throughput

FUNCTION 2.1 0.84 2.1 0.89 0 0.05

Tunnels 1.8 0.7 1.9 0.8 0.1 0.1

1.6 0.6 1.8 0.79 0.2 0.19

1.7 0.57 1.7 0.57 0 0

Relevance % Volume Å3 Relevance % Volume Å3 Average Δ% Volume ΔÅ3

FUNCTION 100 3623 100 4283 100 660

Cavities 51 2131 49 2152 50 21

32 1375 31 1321 31.5 -54

Residue name and number Residue name and number Residue name and number

FUNCTION Arginine 132 Histidine 132 R132H

Catalytic Residues Tyrosine 139 Tyrosine 139

Lysine 212 Lysine 212

Aspartate 275 Aspartate 275

Residue Number pka Residue Number pka ΔpKa

FUNCTION Arginine 132 - 14.23 Histidine 132 - 6.47 -7.76

Catalytic Residues pKa Tyrosine 139 - 12.58 Tyrosine 139 - 12.58 0

Lysine 212 - 11.56 Lysine 212 - 10.73 -0.83

Aspartate 275 - 4.60 Aspartate 275 - 3.32 -1.28

Protein PDB ID: 1T0L
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