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» Several tested novel flame retardants-induced lipid accumulation in human liver cell culture.
» TMPP, TPHP, EHDPP and TDCIPP induced the highest lipid accumulation by altering the expression of genes encoding hepatic

lipogenesis and mitochondrial dysfunction.
» In vitro data from ToxCast and in silico molecular docking suggests PXR and PPARYy could be the potential molecular initiating events

l. In vitro screening and assessment of hepatic steatosis induction by novel flame retardants
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* Despite their increasing use and widespread presence, 1isks, | nFRs enhanced lipid accumulation in HepG2 cells and induced lipotoxicity
especially hazards such as metabolic and reproductive effects
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carcinomas3 DMSO) for 24h. (B) Quantitative analysis of lipid droplets, (Mean + SEM), asterisks
_ _ Indicate a significant difference from the solvent control at p < 0.05 (*), p < 0.01 (**)
« Several studies have shown a strong correlation between
chemical exposure and steatosis in humans, exposure to IIl. nFRs affected the expression of lipid metabolism-related gene
NFRs might be one of the contributing factors.
»  Nuclear receptors such as PXR, PPAR, are major regulators = el — ool 0250050 = = roerrom
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of lipid metabolism and have been identified as molecular
Initiating events (MIES) in the adverse outcome pathways for
hepatic steatosis.
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SREBP-1¢ Figure 4. Regulation of expression of lipid metabolism related genes by nFRs in HepG2 cells treated with TMPP, TPhP, EHDPP, and TDCIPP for 24h
_increase as analyzed using RT-gPCR. (Mean + SEM), asterisks indicate a significant difference from the solvent control at p < 0.05 (*), p < 0.01 (**).
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Figure 1. Adverse outcome pathway for hepatic steatosis with PXR and PPARy
activation as molecular initiating events
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/\@fi@Q QQiQQ /\Q%\gz LR Figure 6. Binding of several nFRs to nuclear receptors as per human fluorescence
~ <<3}<;?‘ A /\0/\00 reporter assay in HepG2 cells from the ToxCast database.

This research aims to determine whether exposure to emerging

: . : . ++) indicate AC50 <10 uM, (+) indicate AC50 >10 uM, (-) indicate not active.
contaminants such as nFRs cause metabolic disruption using the (+4) HM, (+) MM, ()

Figure 5. Effects of TMPP, EHDPP, TPHP, and TDCIPP on
cellular ATP levels in HepG2 cells. (Mean + SEM percentage of

meCha_mStIC and predictive toxmology_approach to aid In controls). The asterisks indicate a significant difference from nFRs Binding energy
environmental and human health risk assessment the solvent control at p < 0.05 (*), p < 0.01 (**). PXR PPARY
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» To unravel the molecular mechanisms for nFRs-induced TPHP 115-86-6 33 6.7
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Figure 7. The binding energy (kcal/mol) for PXR, PPARYy, and selected nFRs
PXR: TMPP<TPHP<EHDPP<TDCIPP
PPARY. TMPP<EHDPP<TPHP<TDCIPP
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* Invitro: Human liver cell lines (HepG2 cells) dysfunction

« Cell viability analysis, high content imaging and analysis, "
RT-gPCR-based gene expression analysis, lipid specific
staining, etc.

* In silico: Molecular docking
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_ | _ « Elucidation of molecular mechanisms and signalling pathways for
Figure 8. Schematic of the proposed role of nFRs mediated

. o . o o NnFRs-induced metabolic dysfunction.
Increased hepatic lipogenesis and steatosis induction in human . ¢ ~ological eff ¢ . : .
orimary hepatocytes via SREBP1c-lipogenic pathway (de novo Assessment of ecotoxicological effects of nFRs In aquatic species

. . [ is). zebrafish).
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