The role of testicular cell-cell communication in male reprotoxicity of high priority environmental chemicals

Affiefa Yawer, E-mail: affiefayawer@gmail.com

MUNI RECETOX

Eliška Sychrová, Petra Labohá, Jan Raška, Ondra Brozman, Pavel Babica, Iva Sovadinová

Group: Cell and Tissue Toxicology; Web: secantox.weebly.com; Twitter: ToxCell

Gap junctional intercellular communication (GJIC) and their critical role in testis

GJIC – direct cell-cell communication (Fig. 1)

mediated through intercellular channels build from connexin (**Cx**) proteins (vertebrates) (**Fig. 2**) plays a central role in coordinating cell-cell communication

coordinates collective responses from the cells across a tissue of multicellular organism

*allows an exchange of low molecular weight

GJIC in testes (Fig. 3)

maintains testicular development & homeostasis

coordinates proliferation and differentiation of testicular cells

synchronizes testicular steroidogenesis i.e. regulation of hormone production and release controls initiation, regulation and maintenance of spermatogenesis

Untimely dysregulation of GJIC & Cxrelated abnormalities may lead to Impaired spermatogenesis, increased germ cell apoptosis, spermatogonial arrest, azoospermia, germ cell deficiency Loss of blood-testis barrier integrity Hyperplasia of androgen-producing Leydig

molecules (<1.2 kDa) between adjacent cells

GJIC - Exchange of small molecules between **Fig. 1**: neighboring cells through gap junction (GJ) channels [1]

Fig. 2: GJIC and Cx related dysregulation [3]

junction

(GJ)

Synchronization of Leydig cell function and androgen production, essential for controlling spermatogenesis

Fig. 3: GJIC & Critical testicular parameters [2]

cells

Leydig cell tumorigenesis Impairment of male reproductive capacity and decrease of fertility

Our research hypothesis: Testicular GJIC plays a critical role in endocrine-disrupting activity of chemicals

Summary & Conclusion & Future perspective

causes of male reproductive dysfunctions

- * "We found supporting evidences for our research hypothesis, i.e. GJIC and Cxs important, but overlooked functional biomarkers of male are reproductive toxicants in somatic testicular cells
- *Well-recognized or potential endocrine-disrupting chemicals (EDCs, Fig. 4) such as vinclozolin, methoxychlor, triclocarban or triclosan induce a rapid dysregulation of GJIC in testicular somatic cells, Leydig TM3 and Sertoli

Our study supports that environmental factors are likely one of the major *EDCs cause their male reprotoxicity through disturbance of MAPK Erk1/2 (mitogen-activated protein kinase extracellular signal-regulated kinases 1/2) and PKC (protein kinase C) signaling pathways and junctional and/or nonjunctional functions of Cx43

> *GJIC should become an integral part of male reprotoxicity assessment and relevant *in vitro* test batteries

> We are currently linking GJIC with functionality of somatic testicular cells responses such as steroidogenesis, proliferation and apoptosis in 2D and 3D

TM4 cells

Methodology

Results

Fig.4: Studied chemicals – representatives of polycyclic aromatic hydrocarbons (PAHs), industrial chemicals, organochlorines, pesticides and personal care products (PCPs) ingredients

Dydowiczova 2020, Sci Report 10

an integral component in modern toxicity testing Dye loadi Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-

	$EC_{res}(\mu M)$		Leyd	lig TM3	cells	Sertoli TM4 cells			
c		-50 (μινι)	0.5-h	6-h	24-h	0.5-h	6-h	24-h	
		Anthracene	>200	>200	>200	>200	>200	>200	
ő		1-Methylanthracene	49	40	41	>200	>200	>200	
0		2-Methylanthracene	>200	>200	>200	>200	>200	>200	
<u> </u>	AHs	9-Methylanthracene	45	52	43	>200	>200	>200	
C-inhibitory activity of selected testicular cells	-	Fluorene	27	31	>100	>200	>200	>200	
		Fluoranthene	44	42	38	>200	>200	>200	
	Industrial chemicals	Benzo[a]pyrene	>200	>200	>200	>200	>200	>200	
		Bisphenol A	>200	200	100	>100	100	72	
		4-n-Nonylphenol	46	46	51	n.t.	n.t.	n.t.	
		4-tert - Nonylphenol	34	28	34	n.t.	n.t.	n.t.	
		4-n-Octylphenol	42	48	31	n.t.	n.t.	n.t.	
		4-tert -Octylphenol	25	35	33	n.t.	n.t.	n.t.	
	Organichlorines	Lindane	132	102	171	85	>100	>100	
		PCB 153	100	>100	>100	>100	>100	>100	
		p,p´-DDT	64	44	41	45	40	46	
	cides	Vinclozolin	>200	>200	>200	100	>100	>100	
	Pestic	Methoxychlor	53	56	42	30	41	32	
2	Ps	Triclocarban	51	48	34	13	14	6	
0	2	Trisland	20	20	22	20	10	10	

Structure-dependent GJIC activity of PAHs in Leydig TM3 cells

- 15 of 19 EDCs had GJIC-inhibitory ** activity in testicular cells
- Rapid GJIC-inhibitory activity (within • 5-30 min) with $_{0.5h}EC_{50} = 6-200 \ \mu M$
- GJIC dysregulation \Rightarrow reversible •

throughput analysis of gap junctional intercellular communication, cell density and viability

B	Triclocarban	51	48	34	13	14	6
ž	Triclosan	30	29	32	20	19	13
n.t	not tested						

process (the exposed cells can recovered within time)

Mouse Leydig TM3 (ATCC \otimes CRL-1714TM) Mouse Sertoli TM4 ••• $(ATCC \otimes CRL-1715^{TM})$ \Rightarrow continuous, nontransformed and nontumorigenic cell lines derived from immature BALB/c mouse testis GJIC-proficient cell lines with dominant Cx43 and Cx45 \Rightarrow A good models of immature testicular cells [3-7]

MOLECULAR MECHANISMS - SUMMARY

- Chemical exposure changed phosphorylation pattern of Cx43 via MAPK-Erk1/2 and **PKC signaling pathways** (1) and its reduction in membrane (2-3)
- Cx43 ubiquitination (2) and subsequent endo-lysosomal degradation (4) likely are involved in this process

Acknowledgment: This project was supported by the Czech Science Foundation Project No. GA16-10775Y

Reference: [1] Synaptic transmission 2019; [2] Kidder et al. 2016, Semin Cell Dev Biol 50: 22; [3] Mather 1980, Biol Reprod 23: 243; [4] Mather et al. 1982, Ann NY Acad Sci 383: 44; [5] Beverdam et al. 2003, Cytogenet Genome Res 101: 242; [6] Wang et al. 2016, Reproduction 152: R31; [7] Nygaard et al. 2014, Sci Rep 5: 10364.