Machine Learning for Analysis of Molecular Dynamics Simulations Petr Kouba, Stanislav Mazurenko, Jiří Sedlář, Josef Šivic

Introduction

Our project employs Machine Learning and Artificial Intelligence techniques to examine Molecular Dynamics simulations of the Amyloid-β peptide. We study the peptide under different conditions: in water (**free Amyloid-β**) and in the presence of small molecules that are suspected of altering its conformational dynamics (Amyloid-β + small molecule). As the peptide is believed to be the hallmark of Alzheimer's Disease, our objective is ultimately to contribute toward a deeper understanding of the disease and its potential treatment.

- **Alzheimer's Disease** is the 7th leading cause of death globally¹, with no efficient drugs available to date
- The aggregation of the intrinsically disordered **Amyloid-β** peptide plays a crucial role in Alzheimer's Disease onset
- Potential drugs may include small molecules preventing the

aggregation of Amyloid-β

- The fact that **Amyloid-**β is **intrinsically disordered** significantly complicates its *in silico* modeling and analysis
- **Artificial Intelligence** shows excellent potential to facilitate the task of analyzing the dynamics of intrinsically disordered proteins

Molecular Dynamics Simulations

- Rich source of information regarding protein dynamics on **short timescales**
- May be difficult to interpret

VAMPnet³ Neural Network

- Trained end-to-end on the simulated data
- Estimates the Markov State Model describing the protein dynamics

Markov State Models

- Describe dynamics on **long timescales**
- Easier to interpret than raw simulations
- **Allow comparison** of free Amyloid- β vs. Amyloid- β + small molecule systems

Preliminary results and future directions

The free Amyloid-β system is dominated by a highly populated **disordered** state.

In contrast, the system with the small molecule exhibits more order.

The system with the small molecule tends towards conformations containing **α-helices**, which may prevent the aggregation of the peptide. TICA space of Amyloid- β + small molecule

IT4INNOVATIONS

CENTER

NATIONAL SUPERCOMPUTING

Next steps:

- Examine how Artificial Intelligence could enhance the data generation step
- Apply the analysis pipeline to other proteins related to Alzheimer's Disease

Acknowledgements:

Sérgio M. Marques, Lucas Disson, David Bednář, Joan Planas-Iglesias, Zainab Sanusi, Antonín Kunka, Anthony Legrand, Zbyněk Prokop, Tomáš Pajdla, and Jiří Damborský

References:

1. WHO Report (2019), The top 10 causes of death

2. Taylor K., Oxford University Press (2020), ISBN: 0191864676, (Brain Image Credit)

UNIVERSIT

OF OSTRAVA

3. Mardt et al., Nat Commun 9, 5 (2018), DOI: 10.1038/s41467-017-02388-1

