The importance of a comprehensive toxicity assessment of nanopesticides in the environment: comparing toxic effects of tebuconazole (TBZ) in different formulations on the nematode C. elegans Mahleh EghbaliNejad¹, Sebastian Höss², Jakub Hofman¹

INTRODUCTION

***Indiscriminate application of pesticides** has led to ecological and health adverse effects, demanding new pesticides¹.

*Nanopesticides (NPs), potentially a promising solution for concerns in the agriculture sector (benefits e.g., improved pesticide solubility& pest` penetration, decrease loss of active ingredients (a.i.) due to their small size, high surface area)¹.

*Potential safety risks of NPs to non-target organisms are emerging concern for both a.i. and the nanocarriers $(NCs)^{2}$.

* Poly(e-caprolactone) (PCL) is a biodegradable and biocompatible polymer, Nanostructure lipid carrier (NLC), 2nd generation of lipid carrier used mostly in medical and agriculture area.

Nematode <u>*C. elegans*</u> is used as a test organism due to simplicity, accuracy, repeatability, and low cost of the experiments.

PURPOSE

 \bigstar Toxicity assessment of different formulations of TBZ on <u>C</u>. *elegans* reproduction in aquatic matrix.

HYPOTHESIS

- ◆ **Different formulations of TBZ** may show varying toxic effect on <u>*C. elegans*</u> reproduction?
- ↔ Mode of action of NPs may be different compared to their associated NCs without pesticide?
- ✤ A comprehensive toxicity assessment is necessary to evaluate the potential risks of these formulations in the environment!

METHOD& MATERIAL

Ecotoxicity test (fig 1)

- Tested compounds: Pure TBZ(10 concentrations), NLC NF& NLC
- NC(8concentrations), PCL NF&PCL NC(8concentrations) Folicur TBZ (TBZ Commercial, 10 concentrations), (table1, Fig 2))
- ► PCL cartier Sased on ISO 10872 t=96, endpoint= <u>C.elegans</u> reproduction (here reporting as %inhibition of reproduction (%IR)
 - E.coli suspension 1000FAU

Chemistry

Preparation of test compounds

Incubation for 48h (t=20°C,gentle shaking, to get max release TBZ) adding E.coli suspension (1000FAU), incubation for 2h Removing aliquot for t=50h verification of TC and free TBZ Incubating for 146h, aliquot for TC and free TBZ at t=146h

Physics characterization

E.coli

addition

Ē

After preparation of chemicals, particles` size, PdI, particle concentration (PC) were measured by MADLS (dynamic light scattering).

<u>li il il</u>

< - >

(Compounds	TC*µg/ml	ZA** (nm)	Pdl***	ZP ^	PC ^^(particles/ml)	EE ^^^
	NLC NF	571.16 ± 35	329±28	0.298±0.07	-28	4.57E+09	91% ± 1
	NLC NC	/// //	318±3	0.2±0.029	-27.4	2.37E+09	////
	PCL NF	1660 ± 120	242.5±2.5	0.176±0.005	-28.56	2.09E+09	98%
	PCL NC	/// //	261±3	0.203±0.04	-27.6±1	1.41E+09	///

Table1 NFs and NCs characterizations (*TC=total concentration of TBZ, ZA** zeta average, PdI***=Polydispersity index, ZP^=Zeta potential, PC^^=Particles concentration, EE^^^= Encapsulation of efficiency

48h

DLS Instrument Compone

Malvern Panalytical

g concentration of TBZ (mg/L)

High Performance Liquid Chromatography (HPLC)

Figure 2, SEM images of A)NLC-TBZ, B) PCL-TBZ

Figure 1 Schematic visualization Of ecotoxicity test design

compounds

incubation of

C.elegans

exposure

2h

96h

Figure 3 (A) dose-response curve of TC for tested compounds, EC50 of TBZ Pure=42.3, NLC-TBZ=6.8, PCL-TBZ=15.2, TBZ Folicur=78.2 mg/l. (B) Doseresponse curve of free TBZ for tested compounds: EC50 of TBZ Pure=49.12, NLC-TBZ=6.4, PCI-TBZ=11.5, TBZ Folicur= 32.2 mg/l

Figure 4 (A) Mixture toxicity model NLC, EC50≥ 1= combination effect (B) Mixture toxicity model PCL, EC50<1= synergism!)

MUNI RECETOX

S C 1

REFERENCES

CONCLUSIONS & limitation

- Toxicity assessment of different formulations of TBZ showed varying effects, NFs showed higher toxicity on <u>C. elegans</u> (IR%).
- ◆ Both NFs (NLC, PCL) showed a joint toxicity of free TBZ and the associated NCs(mixture) toxicity). For NLC-NF, TBZ toxicity was masked by a strong NC` effect. For PCL NF, a synergistic mixture toxicity could be observed (observed > modeled toxicity)³.
- ✤ NFs improved **TBZ properties** (higher solubility..).
- * There is insufficient suitable analytical metrology to monitor the changes of physical characterizations of NFs.

SUGGESTION

- * Regulation and scientific evaluation of nanopesticides is very **urgent**.
- * Artificial intelligence can properties `prediction and nanosafety.

¹An et al. Journal of Nanobiotechnology (2022) 20:11 have deeper contribution to ²Smita et al. Environmental Health 2012, 11(:S13 ³ Martinez etal, Nano Today 43 (2022) 101430

Affiliation

¹Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University ²Ecossa, Starnberg, Germany

*Presenting author: <u>Mahleh.eghbalinejad@recetox.muni.cz</u>

