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§ Study the state-of-the-art inverse folding models and their 
capabilities to account for protein flexibility.

§ Develop an inverse folding model capable of generating 
protein sequences according to prescribed flexibility.

Motivation
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Approach

Preliminary results

Goals

1) Train a sequence-to-flexibility predictor 2) Use the flexibility predictor to guide protein sequence design

The problem of finding a protein sequence for a required 
protein backbone structure, also known as ‘inverse folding’, 
is of high importance for protein design and protein 
engineering. It can be used to find alternative sequences for 
existing protein structures, helping the researchers navigate 
the space of protein mutations by identifying those that do 
not alter the structure. Recent methods, such as 
ProteinMPNN [1], tackled the core problem with success. 
However, the experimental validation of these methods 
brought a new question. Do the inverse folding models 
overoptimize for the recovery of the original structure at the 
cost of losing the protein’s native flexibility? Apart from 
structure, dynamics is another important characteristic of a 
protein which should be accounted for [2]. This ability of 
proteins to change their structure is essential especially for 
most enzymes as it allows them to interact with the substrate 
and perform biochemical reactions.
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 Challenge 1
 How to best quantify
 the protein flexibility?

 Challenge 2
 How to sample the sequence differentiably for end-to-end training?

Flexibility representation Pearson R Spearman R
Raw 𝐶! B-factors 0.47 -
Normalized 𝐶! B-factors 0.56 0.54
Norm. SSE-avg. 𝐶! B-factors 0.56 0.55

Challenge 1: Correlation of true and predicted flexibility 
using different representations of the residue flexibility
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Next steps

§ Demonstrate computationally that the flexibility is retained
§ Apply the model to the design of the Staphylokinase protein for the wet lab validation of the method

Challenge 2: Using Gumbel-Softmax to differentiably sample from the 
logits of ProteinMPNN enabled end-to-end training. The table shows 
first results on sequence recovery and flexibility preservation.

Fine-tuning Seq. Recovery Flexibility corr. (Pears./Spear.)
Batch size 1 0.49 0.52 / 0.54
Batch size 8 0.49 0.49 / 0.52


